Title: Investigating the roles of meteorological factors in COVID-19 transmission in Northern Italy

Abstract

The novel COVID-19 is a highly invasive, pathogenic, and transmittable disease that has stressed the health care sector and hampered global development. Information of other viral respiratory diseases indicates that COVID-19 transmission could be affected by varying weather conditions; however, the impact of meteorological factors on the COVID-19 death counts remains unexplored. By investigating the impact of meteorological factors (absolute humidity, relative humidity, and temperature), this study will contribute both theoretically and practically to the concerned domain of pandemic management to be better prepared to control the spread of the disease. For this study, data is collected from 23 February to 31 March 2020 for Milan, Northern Italy, one of the badly hit regions by COVID-19. The generalized additive model (GAM) is applied, and a nonlinear relationship is examined with penalized spline methods. A sensitivity analysis is conducted for the verification of model results. The results reveal that temperature, relative humidity, and absolute humidity have a significant but negative relationship with the COVID-19 mortality rate. Therefore, it is possible to postulate that cool and dry environmental conditions promote virus transmission, leading to an increase in COVID-19 death counts. The results may facilitate health care policymakers in developing and implementing effective control measures in a timely and efficient way.

+1 (506) 909-0537